Speed Profile

Static Thermal Permeability

The static thermal permeability is the low frequency limit of the dynamic thermal permeability. The thermal permeability problem is the thermal analogy of the viscous permeability problem. When the frame of a porous medium has a sufficient thermal capacity for the compressibility to reach its isothermal value at low frequencies, the excess acoustical temperature can be considered to vanish at the pore walls (this replaces the no-slip condition for viscous flow) and a static “thermal permeability” exists.

Static Thermal Permeability Learn more →

Poisson's Ratio

Young’s Modulus, Poisson’s Ratio and Loss Factor

For isotropic poroelastic materials, the elastic properties to be characterized are Young’s modulus (E), Poisson’s ratio (v) and loss factor (η). The method is based on the dynamic compression of two samples of different shape factors (s1 and s2). This enables the simultaneous characterization of the three elastic properties. The method is valid for frequencies from 20 to 100 Hz.

Young’s Modulus, Poisson’s Ratio and Loss Factor Learn more →

Scroll to Top